## Morley's Trisector Theorem by Gerhard Schallenkamp (23.01.2017)

- school-level of 8<sup>th</sup> class required -

Notations.  $\angle BAC$  denotes the angle ( $\leq 180^{\circ}$ ) at the vertex *A* in the triangle *ABC*.  $\Phi_{\Delta}$  denotes the intersection of the three angle bisectors of the triangle  $\Delta$ .

For preparation some properties of  $\Phi_{\Delta}$ :

Theorem. The three angle bisectors intersect in a single point, the incenter, denoted by  $\Phi_{\Delta}$ , the center of the triangle's incircle, with the angles  $90^\circ + \alpha/2$ ,  $90^\circ + \beta/2$ ,  $90^\circ + \gamma/2$ . Each of these angles is open to that side of triangle which is opposite to the angles  $\alpha$ ,  $\beta$ ,  $\gamma$ .



Proof: Any point of an angle bisector is equidistant to the sides of the angle. Thus  $\Phi_{\Delta} = \Phi_{ABC}$  is equidistant to sides a, b und c. The angle at  $\Phi_{ABC}$  opposite side a is  $180^{\circ} - \beta/2 - \gamma/2 = 180^{\circ} - \frac{1}{2}(\beta + \gamma) = 180^{\circ} - \frac{1}{2}(180^{\circ} - \alpha) = 90^{\circ} + \alpha/2$ .

This variation of the theorem will be important: Theorem. If the point *P* lies in the triangle *ABC* on the angle bisector of *A* and  $\angle BPC = 90^\circ + \alpha/2$ , then *P* is

Now we are ready for Frank Morley's theorem:

Theorem. The three intersection points of **adjacent angle trisectors** in any triangle are the vertices of an **equilateral** triangle. (see outlines below).

unique and =  $\Phi_{ABC}$ .

Proof: Starting with an equilateral triangle *PQR* we shall construct a triangle *ABC* with the arbitrary angles  $3\alpha_0$ ,  $3\beta_0$  und  $3\gamma_0$ .  $\alpha_0+\beta_0+\gamma_0=60^\circ$  follows

from the angle sum of a triangle. We need the angles  $\alpha = 60^{\circ}-\alpha_0$ ,  $\beta = 60^{\circ}-\beta_0$  und  $\gamma = 60^{\circ}-\gamma_0$ , the important angle sum of which is  $\alpha+\beta+\gamma = 180^{\circ}-(\alpha_0+\beta_0+\gamma_0) = 120^{\circ}$ .





Both outlines show: The mid angle at *A* is  $\angle RAQ = 180^{\circ} - \alpha - (\alpha + \beta + \gamma) = 60^{\circ} - \alpha = \alpha_0$ . nalogously  $\angle PBR = \beta_0$  and  $\angle PCQ = \gamma_0$ .

 $\xi$  denotes the angle  $\angle BXC$  at *X*. We calculate  $\xi = 180^{\circ} - 2\alpha = 2 \cdot (90^{\circ} - \alpha)$ .

The big <u>angle at *P*</u> is  $180^{\circ}-\alpha = 90^{\circ}+(90^{\circ}-\alpha) = 90^{\circ}+\xi/2$ . Because of symmetry <u>*P* lies on the</u> angle bisection through *X*, too. That is why  $P = \Phi_{BCX}$ .

Therefore the lines *BP* und *CP* are angle bisections in the triangle *BCX*, and therefore  $\angle CBP = \angle RBP = \beta_0$  and  $\angle BCP = \angle QCP = \gamma_0$ .  $Q = \Phi_{ACY}$  und  $R = \Phi_{ABZ}$ , follow analogously, so that we get three equal angles at the point *A* and analogously at the points *B* and *C*. Thus the triangle *ABC* has the wanted angles and shows the correctness of Morley's theorem.

(Concept and parts of the outlines from the book Claudi Alsina, Roger B. Nelsen, *Charming Proofs*, 2010, p. 100)

